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Advances in ethanol production
Claudia C Geddes, Ismael U Nieves and Lonnie O Ingram
Barriers to the commercialization of lignocellulosic ethanol

include the development of more robust biocatalysts, reduction

of cellulase costs, and high capital cost associated with a

complex process. Improvements have been made in all areas

during the past two years. Oxidoreductases, transporters, and

regulators have been identified that can increase the tolerance

of biocatalysts to inhibitors formed during pretreatment.

Biocatalysts are being developed that grow under conditions

that are optimal for cellulase activity and others have been

engineered to produce glycoside hydrolases. Ethanol yields

resulting from most current process configurations are similar,

approximately 0.21 g ethanol/g dry cellulosic feedstock.

Potentially, this can be increased to at least 0.27 g ethanol/g

biomass (83 gal/ton) using simpler processes.
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Introduction
Lignocellulosic biomass (LCB) is an abundant, renewable

source of carbohydrates for microbial conversion to

chemicals and fuels. However, lignocellulose (cellulose

and hemicellulose) is designed by nature to resist depo-

lymerization. Processes that produce fermentable sugars

from LCB tend to be complex and capital intensive.

Chemical pretreatment is essential to increase cellulase

access [1–3]. Pretreatments that hydrolyze hemicellulose

into sugar syrups also form side products that retard

fermentation. A solid-liquid separation and partial sugar

purification are typically included to mitigate toxins,

followed by the separate fermentation of C-5 (hemicel-

lulose) and C-6 (cellulose) sugars.

Approximately 200 million dry tons of LCB are produced

in the U.S. each year that could be used to produce 16

billion gallons of ethanol (Oak Ridge National Labora-

tory; URL: http://www.ornl.gov/�webworks/cppr/y2001/
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rpt/123021.pdf). Starch-based ethanol (U.S.) and sugar-

cane-based ethanol (Brazil) are now mature industries

but both compete with food uses. Companies such as

Abengoa, BP-Verenium, Coskata, Dupont-Danisco and

Poet are attempting to commercialize cellulosic ethanol

in the next decade (Gigaom; URL: http://gigaom.com/

cleantech/12-companies-racing-to-build-cellulosic-ethanol-

plants-in-the-us/). Pilot and demonstration plants will serve

as platforms to identify bottlenecks and potential barriers to

full commercialization.

This review highlights advances in the fermentative

production of ethanol from lignocellulose during the past

two years. Improvements are noted in the areas of pre-

treatment, biocatalysts, saccharification and liquefaction,

and process simplification.

Advances in pretreatment
Pretreatments using dilute sulfuric acid require reactors

made of exotic metals. Although all mineral acids have

been explored to some extent, recent studies have pro-

posed the use of phosphoric acid [4��,5]. As a weaker acid,

phosphoric acid pretreatment produces lower levels of

toxic side products than sulfuric acid pretreatment and

can be used with a stainless steel reactor [4��]. Autohy-

drolysis produces the lowest levels of side products [2].

With autohydrolysis, hemicellulose components are solu-

bilized as oligosaccharides that require further hydrolysis

with enzymes or acid. Ethanologenic Escherichia coli
strains have been adapted to phosphoric acid hydrolysates

and can now ferment hemicellulose and cellulose derived

sugars together in a single vessel, termed simultaneous

saccharification and co-fermentation (SScF). The use of

phosphoric acid could eliminate the need for separation of

hydrolysates from pretreated fiber, detoxification, and

reactors of exotic metals resulting in a simpler process

quite analogous to that for corn ethanol (Figure 1). Using

this process, ethanol yields of up to 0.27 g/g bagasse (dry

weight) have been obtained (83 gal/ton) [6��].

The SPORL process (sulfite pretreatment to overcome

recalcitrance of lignocellulose) and SO2 impregnation use

sulfur compounds to disrupt the LCB structure [7��,8].

SPORL is better suited for biomass with high lignin content

and SO2 impregnation for agricultural residues [8]. SPORL

pretreatment was shown to increase sugar yields (from

57% to 88%) and reduce inhibitors by up to 65% compared

to dilute sulfuric acid pretreatment of softwood [7��,9].

Ammonia-based AFEX pretreatment (ammonia fiber

expansion) is very effective at increasing fiber digestion

while producing lower levels of inhibitors than sulfuric
www.sciencedirect.com
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Lignocellulose to ethanol process configurations. The cellulose could be hydrolyzed alone before fermentation (separate hydrolysis and fermentation,

SHF) or with the hemicellulose (separate hydrolysis and co-fermentation, SHcF) followed by fermentation of the resulting slurry. Cellulose hydrolysis

could also occur simultaneously with fermentation in the presence (SScF) or absence (SSF) of hemicellulose. In the liquefaction followed by

simultaneous saccharification and co-fermentation (L + SScF) process, there is a cellulose prehydrolysis step in the presence of hemicellulose

hydrolysate followed by fermentation but the cellulases continue to hydrolyze the cellulose during fermentation. The consolidated bioprocessing

process involves a biocatalyst that is capable of producing all the hydrolytic enzymes required for cellulose hydrolysis and is also capable of

fermenting all the resulting sugars in the presence of hydrolysate inhibitors.

Adapted from [2].
acid pretreatments [10,11]. Hemicellulose oligomers pro-

duced by the AFEX process require further hydrolysis

into monomers [2]. After AFEX pretreatment and enzy-

matic digestion, over 80% of the carbohydrate in the fiber

was recovered as soluble sugar [11]. Subsequent studies

have identified compounds (4-hydroxybenzaldehyde, lac-

tate, and acetate) formed during AFEX pretreatment that

inhibited fermentations with E. coli KO11 [12��]. AFEX

remains a highly effective pretreatment for grasses.

Advances in biocatalyst
The need for more robust biocatalysts is one of the

weakest links in the LCB to ethanol process. These

biocatalysts need to be resistant to inhibitors formed

during lignocellulose pretreatments, co-utilize a variety

of sugars at high yields, secrete cellulase enzymes, and

remain active under conditions that are near optimal for

cellulase function (pH 5, 50 8C). Much of the complexity

in lignocellulosic ethanol processes stems from the need

for toxin mitigation (solid liquid separation after pretreat-

ment; sugar cleanup) before fermentation. Additional
www.sciencedirect.com 
complexity comes from the requirement for external

sources of cellulase enzymes. Developing biocatalysts

that ferment under conditions that are near optimal for

fungal cellulase activity can reduce the requirement for

external enzymes. Engineering the fermenting biocata-

lyst to produce some or all of the cellulase enzymes

provides a complementary route to further reduce

enzyme cost. The development of a fermentation-based

lignocellulose to ethanol industry depends on research

advances to minimize these biological impediments.

Developing tolerance to hydrolysate inhibitors
Furans from sugar dehydration, acetate, and soluble

products from lignin are the primary inhibitors in hemi-

cellulose hydrolysates from dilute acid pretreatment

[13]. Of these, furans appear to be particularly important

and have been the focus of many recent papers. Bioca-

talysts have been developed with increased resistance to

furfural [14��,15,16��,17,18,19��], 5-hydroxymethylfur-

fural [15,19��,20], acetate [21�], and to unfractionated

dilute acid hydrolysate [6��,15,19��,22��,23��].
Current Opinion in Biotechnology 2011, 22:312–319
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Furans can be reduced to less toxic furan alcohols by most

organisms using native enzymes. Expression arrays have

noted many changes among oxidoreductases in response

to furans with yeast [14,15,24,25��], Zymomonas mobilis
[19��,21�], and ethanologenic E. coli [16��,17,18,20]. In

some cases, regulators have been identified [18,19��].
Several of the furfural reductase enzymes in E. coli have

sufficiently low Km values for NADPH that growth is

inhibited until furan metabolism has been completed.

Silencing of these low Km enzymes (less than 20% of total

furfural reductase activity) was beneficial for furfural

tolerance in E. coli [17]. Other higher Km enzymes

(NADPH), NADH-dependent enzymes [15], and trans-

hydrogenase enzymes have been shown to confer partial

resistance to furfural [16��,18,20].

Reduced sulfur compounds have long been used to

improve the fermentation of dilute sulfuric acid hydro-

lysates of wood although the mode of action remains

unknown [23��,26��,27]. Saccharomyces cerevisiae fermen-

tation of acid hydrolysates (sugarcane bagasse and spruce

wood) was improved by the direct addition of reduced

sulfur compounds to slurries containing complex media,

termed ‘in situ detoxification’ [26��]. The use of sodium

metabisulfite and sodium hydrosulfite was also shown to

improve the fermentation of slurries containing phospho-

ric acid pretreated sugarcane bagasse (L + SScF) using E.
coli in mineral salt medium [23��]. Surprisingly, addition

of metabisulfite did not decrease the toxicity of furfural or

acetate when each was tested alone. It is possible that

metabisulfite neutralizes the toxicity of soluble products

from lignin.

Improving hexose and pentose sugar co-
utilization
The co-utilization of hexose and pentose (xylose and

arabinose) sugars remains a challenge for biocatalysts,

especially in the presence of hydrolysate inhibitors.

Derivatives of S. cerevisiae have been previously engin-

eered to ferment xylose and these continue to be

improved by additional genetic changes in xylose metab-

olism [28��,29,30]. Although ethanologenic E. coli have

the native ability to metabolize all sugars from LCB,

xylose utilization lags behind glucose and was also

improved by further genetic changes [31]. Inhibitors

present in acid hydrolysates retarded xylose metabolism

during E. coli fermentation even with this genetic change.

The lag in xylose metabolism was substantially relieved

by injection of small amounts of air during fermentation,

termed microaeration [6��,32].

Advances in saccharification
Reducing the cost of enzyme production

The cost of cellulase enzymes remains a major concern for

the commercialization of LCB ethanol processes. Cost

estimation software (e.g. Aspen Plus and Aspen Icarus

Process Evaluator) has been used to compare the minimum
Current Opinion in Biotechnology 2011, 22:312–319 
ethanol selling prices of processes involving the purchase of

commercial cellulase and on-site cellulase production [33].

International enzyme companies such as Novozymes and

Genencor have formed partnerships with Poet LLC and

Dupont Danisco Cellulosic Ethanol LLC, respectively, to

commercialize lignocellulosic ethanol (The New York

Times; URL: http://www.nytimes.com/cwire/2010/02/16/

16climatewire-economics-improve-for-first-commercial-

cellu-93478.html?scp=1&sq=cellulosic%20ethanol%20

plants&st=cse). Both have reported that enzymes will cost

approximately $0.50/gallon of ethanol. This represents an

80% price reduction during the last two years.

Efforts continue to reduce the cellulase requirement.

Novel cellulases have been isolated from a variety

of organisms using improved screening methods [34].

Current research has focused on developing improved

cellulase enzyme cocktails, development of biocatalysts

with fermentations that match the optimal conditions for

cellulase activity, and novel cellulases [34,35��]. Tricho-
derma reesei is currently the primary industrial organism

used for the production of cellulase enzymes. Sequencing

of the T. reesei genome will facilitate further improve-

ments in enzyme production [36].

Improving cellulase performance

Compounds have been identified that increase cellulase

effectiveness and enzyme usage [37,38��,39]. These in-

clude surfactants (Tween 80, cetylpyridinium chloride,

and cetyl trimethylammonium bromide) and divalent

metals (calcium and magnesium). Up to 35% improve-

ment in saccharification was reported. All are proposed to

act by reducing the nonproductive binding of cellulases to

lignin. Bacillus coagulans is a thermotolerant biocatalyst

capable of growth at temperatures and pH (55 8C, pH 5.0)

that are optimal for fungal cellulases. Using this organism,

the cellulase was reduced to 5 FPU/g cellulose during

lactate production [35��,40]. Similar benefits would be

expected for ethanol production after further metabolic

engineering, and for other biocatalysts that can function

under these conditions.

Toward consolidated bioprocessing

Consolidated bioprocessing without the need for exter-

nally supplied enzymes remains a goal for many scientists

[41�,42�,43��,44,45]. Expression of endoglucanase I and II

genes from T. reesei QM6a allowed the resulting strain to

ferment phosphoric acid swollen cellulose (amorphous)

when beta-glucosidase was supplied [41�]. Tsai et al. and

Wen et al. reported the development of recombinant S.
cerevisiae strains capable of displaying functional mini-

cellulosomes on their surface exhibiting enzyme synergy

and producing 3.5 g/L and 1.8 g/L ethanol, respectively,

using phosphoric acid swollen cellulose [42�,43��].
Previous studies have demonstrated up to 11 g/L ethanol

production from phosphoric acid swollen cellulose using

Klebsiella oxytoca strain SZ21 expressing endoglucanase
www.sciencedirect.com
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Comparison of ethanol production from lignocellulose and corn. (a) Simplified process using phosphoric acid hydrolysis of hemicellulose and

enzymatic hydrolysis of cellulose. Enzymatic liquefaction was added before co-fermentation of hexose and pentose sugars in a single vessel

(L + SScF) and (b) enzymatic liquefaction of hydrated corn before simultaneous saccharification and fermentation (L + SSF).

Adapted from [21�].
genes from Erwinia chrysanthemi (celY, celZ) [44]. Synergies

between purified cellulases and xylanases from the ther-

mophilic bacterium Thermobifida fusca displayed on

‘designer cellulosomes’ were found to possess higher

activity on wheat straw than the corresponding free

enzymes [45].

Process simplification

Reducing process complexity remains a major challenge

for the commercialization of LCB to ethanol. Current

research is focused on eliminating the need for detox-

ification of hydrolysates, developing robust biocatalysts

capable of fermenting pentose and hexose sugars simul-

taneously, reducing water usage, increasing ethanol yield

and titer, and decreasing cellulase usage. Considerable

progress has been made during the past two years by

developing robust biocatalysts capable of fermenting

pentose and hexose sugars simultaneously. Further pro-

gress is needed to increase ethanol titers and to decrease

water and cellulase usage. Collaborative research pro-

jects have focused on comparing pretreatment options

for specific biomass types (e.g. corn stover or poplar wood

[1,46��]). Various process configurations are shown in

Figure 2. These decrease in complexity from separate

hydrolysis and fermentation (SHF) to consolidated bio-

processing (CBP). The SHF process involves separation

of the cellulose-rich solid from the hemicellulose hydro-

lysate and separate fermentation trains. L + SScF and

SScF processes combine C-6 and C-5 sugar fermenta-

tions in a single vessel [6��,22��,23��]. The consolidation

of bioprocessing steps is hindered by the fibrous nature of

suspensions at loadings of 10–20% solids [47,48]. Models

have been described relating viscosity, solubilized

sugars, time, and enzyme loadings for slurries of sugar-
www.sciencedirect.com 
cane bagasse [4��,48,49]. On the basis of these studies, a

partial saccharification step using a CSTR (one to six

hours residence) was proposed [4��]. This liquefaction

step can produce slurries containing 10–15% solids

(solids plus solubles) that can be readily pumped

and mixed.

SScF of lignocellulosic biomass
Pretreatment processes typically require solid–liquid sep-

arations and neutralization of hydrolysate toxins before

fermentation. With the development of hydrolysate

resistant biocatalysts such as E. coli MM160 [22��,23��]
and S. cerevisiae 424A [43��,44,45,46��,47], comparable

yields could be obtained with less process complexity.

The development of robust biocatalysts allowed the fiber

and liquid from pretreatment to be fermented without

separation [6��,22��,23��]. The resulting process is analo-

gous to the mature corn dry milling ethanol process

(Figure 1) that combines all components in a single vessel

after an initial liquefaction step (L + SScF process).Etha-

nol yields for LCB processes have continued to improve

during the past two years (Table 1). Despite differences

in process complexity, similar ethanol yields were

obtained by most researchers, approximately 0.21 g/g

(63 gal/ton). Higher yields are obtained when purified

cellulose was used (e.g. paper sludge [55��]) or starch

combined with lignocellulose (e.g. corn silage and whole

corn plant [53]). The use of SPORL pretreatment is

making similar progress toward process simplifications

(e.g. L + SScF) although part of the hydrolysate was

removed before fermentation [56]. AFEX treated corn

stover supplemented with corn steep liquor was fermen-

ted after an initial 96 h prehydrolysis (cellulases and

hemicellulases added) to produce 40 g/L ethanol
Current Opinion in Biotechnology 2011, 22:312–319
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Table 1

Comparison of ethanol yields from SScF processes.

Feedstock Pretreatment Biocatalyst Ethanol Reference

Titer (g/L) Yield (g/g untreated

feedstock)

Rice straw Dilute acid M. indicus 11 0.11 [60]

Spruce SO2 impregnation S. cerevisiae TMB3400 45 Not calculatedc [61]

Forage sorghum Aqueous ammonia S. cerevisiae – 0.13 [62��]

Hybrid poplar Aqueous ammoniaa E. coli KO11 16 0.24 calculatedd [63]

Rice straw Aqueous ammoniaa S. cerevisiae D5A 12 0.12 [64]

Corn stover AFEX S. cerevisiae 424A(LNH-ST) 40 0.20 [51��]

Wheat straw Steam explosiona K. marxianus CECT 10875 36 0.18 calculatedd [65��]

Rice straw AFEX S. cerevisiae 424A(LNH-ST) 37 0.21 calculatedd [54]

Rice straw AFEX P. stipitis FPL-061 30 0.17 calculatedd [54]

Rice straw AFEX P. stipitis DX-26 28 0.16 calculatedd [54]

Switchgrass Hydrothermolysis S. cerevisiae D5A 22 0.17 calculatedd [66]

Switchgrass Hydrothermolysis K. marxianus IMB 19 0.15 calculatedd [66]

Barley straw Steam explosion K. marxianus CECT 10875 22 0.17 calculatedd [67]

Sugarcane bagasse Dilute phosphoric E. coli MM160 (KO11 derivative) 29 0.21 [22��]

Sugarcane bagasse Dilute phosphoric E. coli MM160 (KO11 derivative) 20 0.20 [23��]

Sugarcane bagasse Dilute phosphoric E. coli MM170 (KO11 derivative) 27 0.27 [6��]

Spruce SO2 impregnation S. cerevisiae (bakers’s yeast) 18 0.18 calculatedd [68��]

Switchgrass AFEX S. cerevisiae 424A(LNH-ST) 36 0.19 [50]

Distillers grains Liquid hot water S. cerevisiae D5A 14 0.09 calculatedd [69]

Distillers grains AFEX S. cerevisiae D5A 14 0.09 calculatedd [69]

Corn stover AFEX S. cerevisiae 424A(LNH-ST) 40 0.22 calculatedd [70]

Corn stover AFEX E. coli KO11 31 0.17 calculatedd [70]

Corn stover AFEX Z. mobilis AX101 32 0.18 calculatedd [70]

Forage sorghum AFEX S. cerevisiae 424A(LNH-ST) 31 0.17 calculatedd [52]

Sweet sorghum bagasse AFEX S. cerevisiae 424A(LNH-ST) 42 0.15 calculatedd [52]

Forage sorghum AFEX S. cerevisiae 424A(LNH-ST) 31 0.18 calculatedd [52]

Sweet sorghum bagasse AFEX S. cerevisiae 424A(LNH-ST) 29 0.18 calculatedd [52]

Rice straw Dilute acid C. tropicalis ATCC 13803 20 0.20 [71]

Corn silage AFEX S. cerevisiae 424A(LNH-ST) 28 0.31 calculatedd [53]

Whole corn plant AFEX S. cerevisiae 424A(LNH-ST) 30 0.32 calculatedd [53]

Lodgepole pine SPORLb S. cerevisiae Y5 21 0.21 [7]

Paper sludge No additional treatments S. cerevisiae RWB222 45 0.26 calculatedd [55��]

Paper sludge No additional treatments Z. mobilis 8b 46 0.27 calculatedd [55��]

Lodgepole pine SPORLb,e S. cerevisiae D5A – 0.22 [56]

Corn stover AFEX C. phytofermentans 2.8 0.17 [72]

Corn stover AFEX S. cerevisiae 424A(LNH-ST) 3.9 0.24 [72]

a Solids were washed after pretreatment.
b Solid-liquid separation after pretreatment.
c Unable to calculate with reported data.
d Results presented were used to calculate yields on an original biomass basis.
e Detoxification of hydrolysate before fermentation.
(0.22 g ethanol/g corn stover [51��]) and dilute acid pre-

treated sugarcane bagasse was fermented to high ethanol

yields (0.27 g ethanol/g bagasse) when air was added to

the headspace during a L + SScF process [6��].

Dual uses of process residues, chemicals, and water

Beneficial products must be derived from all materials

entering LCB to ethanol processes. Vinasse, stillage from

sugarcane ethanol processes, has been used for many years

as a fertilizer for biomass crops [57]. Pretreatment pro-

cesses with phosphoric acid offer a similar opportunity by

producing an ammonium phosphate fertilizer that includes

magnesium sulfate and trace metals [4��,22��,49]. A

phosphoric acid LCB-ethanol process can be viewed as a

temporary stop for water and fertilizer en route to farms for

new crop growth, sharing the cost of these materials.
Current Opinion in Biotechnology 2011, 22:312–319 
Lignin-rich residues can be used as boiler fuel or converted

to higher value products [58,59]. Lignin could also be

formed into inert blocks as an effective means for carbon

sequestration.

Conclusions
The challenge of producing 36 billion gallons of ethanol

by the year 2022 is being met with an expansion of

research in the biofuel arena. Major improvements have

been made as researchers learn more about the genetic

basis of resistance to inhibitors in acid hydrolysates

and pentose utilization. Pretreatment processes have

been optimized to minimize inhibitor formation and to

improve enzymatic hydrolysis of cellulose. The cost of

cellulase enzymes remains a concern. Approaches have

been proposed to minimize external enzyme usage by
www.sciencedirect.com
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producing enzymes in the biocatalyst and by providing

conditions that increase the effectiveness of cellulases.
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