Εντοπισμός θέσης και διαχείριση κινητικότητας σε ετερογενή ασύρματα δίκτυα με υποβοήθηση από το δίκτυo
Abstract
The nowadays heterogeneous wireless network (HWN) is a collection of ubiquitous wireless networking elements (WNEs) that support diverse functional capabilities and networking purposes. In such a heterogeneous networking environment, localization and mobility management will play a key role for the seamless support of emerging applications, such as social networking, massive multiplayer online gaming, device-todevice (D2D) communications, smart metering, first-responder communications, and unsupervised navigation of communication-aware robotic nodes. Since most of the existing wireless networking technologies enable the WNEs to assess their current radio status and directly (or indirectly) estimate their relative distance and angle with respect to other WNEs of the same Radio Access Technology (RAT), the integration of such information from the ubiquitous WNEs arises as a natural solution for robustly handling localization between (not necessarily homogeneous) WNEs and mobility management of moving WNEs governed by resource-constrained operation. Under the viewpoint of investigating how the utilization of such spatial information can be used to enhance the performance of localization and mobility management in the nowadays HWN, in this work we focus and contribute in the following four research areas: i) localization and peer-discovery between non-homogeneous WNEs, ii) network-assisted D2D discovery in cellular networks, iii) energy-efficient handover (HO) decision in the macrocell – femtocell network, and iv) network-assisted vertical handover decision (VHO) for the integrated cellular and WLAN heterogeneous wireless network.