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Inmost integral image analysis and processing tasks, accurate knowledge of the internal image structure
is required. In this paper we present a robust framework for the accurate rectification of perspectively
distorted integral images based on multiple line segment detection. The use of multiple line segments
increases the overall fault tolerance of our framework providing strong statistical support for the rec-
tification process. The proposed framework is used for the automatic rectification, metric correction,
and rotation of distorted integral images. The performance of our framework is assessed over a number
of integral images with varying scene complexity and noise levels. © 2011 Optical Society of America
OCIS codes: 100.3020, 100.5010, 100.6890, 110.2960, 110.2990.

1. Introduction

The technological advances in sensor and display
technologies as well as in optical component
manufacturing allowed the development of three-
dimensional (3D) capturing and display devices. As
these devices are now penetrating consumer market
applications, there is a need for improving them and
increasing their robustness. In this paper we focus on
integral imaging (InIm) systems. The InIm principle
that was initially formulated by the Nobel Laureate
G. Lippman [1] back in 1908 is currently considered
one of the most promising techniques for delivering
3D content, featuring full color, adequate detail, and
depth levels and support for multiple simultaneous
viewers [2]

The basic InIm acquisition setup depicted in
Fig. 1(a) comprises a charged coupled device (CCD)
and a lens array (LA) [3,4] On the receiver, a typical
InIm display setup is assembled of a liquid crystal
display (LCD) and an appropriate LA, as depicted
in Fig. 1(b).

Each of the lenses in the LA grid placed over the
CCD of the acquisition device forms an elemental im-
age (EI) on the sensor, which is a micrography of a
part of the scene. The projection of the EIs through
the LA on the receiver integrates the EIs in the space
between the display and the viewer reproducing the
initial 3D scene.

Because ofmisalignments thatmay occur when the
LA is placed over the CCD of the acquisition device,
perspective distortions may be introduced in the EI
grid, which transform the square shaped EIs into
convex quadrilaterals. Figure 2(a) shows a two-
dimensional (2D) rendered image of a dice while
Fig. 2(b) shows the ideally acquired InIm (Iid) where
no LA-CCD misalignments are present. A misalign-
ment of the LA and the CCD results in a geometric
integrity degradation of the acquired InIm �Iac�, as
shown in Fig. 2(c). These misalignments finally yield
apoor 3Drepresentation throughan InImdisplay or a
deformed 3D object after applying a reconstruction
process like the one presented in [5]. Consequently
an InIm rectification stage is required to correct these
perspective distortions [6] on the acquired image.

This need was initially identified and accurately
resolved in 2006 [7] accounting for small rotational
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misalignments and imperfections of the LA grid on a
2D plane parallel to the CCD sensor. A more generic
approach was recently proposed [8] to compensate
for perspective distortions due to LA and CCD
misalignments.

In this paper we propose an alternative approach
to the work presented in [8], targeting an automated
and fault tolerant detection and rectification frame-
work with strong statistical support, based on the
InIm characteristics. The basic concept of the pro-
posed framework is to utilize the EIs’ boundaries
in the rectification process as a global InIm feature
that localizes an orthogonal grid present in the InIm
structure. This process increases the reliability and
robustness of the algorithm, taking into account the
whole InIm structural components.

In detail, the proposed framework uses a robust
multiple line segment detection algorithm (LSD)
[9] to detect and register line segments in the InIm
belonging to the EI boundaries. Consecutively the
registered segments are clustered according to their
collinearity. The collinearity clustering approach is
used to identify and remove line segments not be-
longing to the boundaries of the EIs. The groups of
the remaining line segments that are highly likely
to belong to the boundaries of EIs are used in a least
square fitting sense to reconstruct the grid lines in
the distorted InIm. The reconstructed grid lines
are grouped into two concurrent line sets that con-
verge into two points in the InIm plane. These two
estimated points are called vanishing points [6]
and are used in the rectification process, which fol-
lows immediately after the determination of the best
pair of vanishing points.

The described approach outperforms methods
based on a combination of an edge detector and
the Hough transform in terms of registration accu-
racy and speed. It should be noted that the accuracy
of the InIm rectification process is further increased
due to the fact that the statistical derivation of the
parameters is based on the whole EI grid registra-
tion. The described process does not require any
manual parameter setting; therefore automated
rectification can be preformed without any user
interaction.

The rest of this paper is organized in four sections.
In Section 2 we present the details of LSD and the
clustering method used for ruling out invalid line
segments. In the same section the concurrent line
sets are produced. In Section 3 we analyze the basic
principles of the rectification process used in our
work and propose certain augmentations to further
increase the performance of the algorithm in real
applications. In Section 4 we provide the results of
the application of the framework in a set of different
InIms to evaluate the accuracy and noise robustness
of the algorithm. Section 5 concludes this paper, sum-
marizing the outcomes of the present research.

2. EIs Grid Line Reconstruction

In this section we analyze the procedure applied in
the acquired InIm, Iac, shown in Fig. 2(c), for the de-
tection and the registration of the grid of straight
lines formed by the EI boundaries. This process is
a fundamental step required for the accurate InIm
rectification described in Section 3. The above pro-
cess is divided into three distinct steps that are
further elaborated in this section.

Fig. 1. (a) Integral imaging acquisition, (b) InIm display setup.

Fig. 2. (a) 2D rendered image of a dice. (b) An undistorted InIm of the dice, Iid. (c) A distorted InIm of the dice, Iac. The InIm borders are
shown for illustration purposes.
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A. Detection and registration of the InIm’s line
segments, aiming to reconstruct the EI’s boundaries.

B. Rejection of the majority of line segments that
do not belong to EI’s boundaries.

C. Clustering of the remaining segments into col-
linear groups and estimation of the line equation for
each group.

A. Detection and Registration of InIm Line Segments

The first step toward the registration of the straight
lines of the grid is the detection and registration of
the line segments that belong to the EI boundaries
in Iac. For this purpose we use the LSD algorithm,
which has a number of strong features, as it does
not require any parameter setting and is not de-
ceived by the random texture [9] of the contents of
the EIs. In addition the LSD algorithm has linear ex-
ecution times, making it an ideal candidate for a fast
InIm rectification framework.

The LSD algorithm uses a region growing process
followed by an estimation of the line support region
for each line segment. Finally, an adaptation of the
method presented in Desolneux [10] is used for line
segment validation. In detail:

i. A region growing process uses as a feature the
angle between the perpendicular direction to each
pixel gradient and the level-line to form line support
regions. The pixels assigned to each line support re-
gion share the same level-line angles up to a certain
precision.

ii. Line segments are formed using the pixels in
line support regions. The gradient magnitude of
the pixels is used as the pixels mass and each line
support region is approximated by a rectangle repre-
senting the line segment. The center of the rectangle
is assigned to the center of mass of the pixels in the
region and the orientation of the rectangle is deter-
mined by the first inertia axis of the pixels in the re-
gion. The size of the rectangle is adjusted to contain
all the pixels in the region.
iii. Each of the resultant rectangles is refined

using a number of false alarms (NFA) approach.
The rectangular approximation for each line support
region is the one with the smallest NFA value.

The algorithm outputs a sequence of registered
line segments flig where each segment li is specified

by its start and end points �si; ei�, denoted by their
coordinates �xsi ; ysi� and �xei ; yei�, respectively.
B. Rejection of Falsely Detected Boundary Segments

The detected and registered line segments after ap-
plying the LSD algorithm are shown in Fig. 3(a). As
can be easily noted in Fig. 3(a), the sequence flig con-
tains segments that belong to the grid lines, but it
also contains segments that belong to the EI content.
A careful examination of Fig. 3(a) shows that the di-
rection angles of the segments belonging to the grid
lines form two populations separated by an angular
distance around 90°, while the rest of the line seg-
ments have random direction angles.

This feature is used in this step of the algorithm to
reject most of the undesired line segments. In detail
the slope of each segment in flig is initially calculated
and its corresponding direction angle sequence is
evaluated. Consequently the histogram of the direc-
tion angle values is calculated and plotted in the
range �−45°; 135°� as shown in Fig. 4(a) to avoid fold-
ing around 90°.

Each of the two lobes in the resulting histogram
shown in Fig. 4(a) corresponds to segments parallel
to the lines forming the EI grid. The rest of the his-
togram bins contain small populations of line seg-
ments that represent the content within the EIs.
Accounting for small perspective distortions the po-
pulation of the lobe closer to 0° is labeled h, corre-
sponding to the horizontal grid lines of Iid, and the
population closer to 90° is labeled ν, corresponding
to the vertical grid lines of Iid.

In order to automatically discriminate between the
two segment groups h and ν, as well as segments that
belong to the EI content, we developed the following
process:

i. We use an optimum threshold algorithm (OTA)
[11] to partition the given histogram into two sets of
consecutive bins in such a way that separability of
the corresponding populations flhig and flvig is
maximized.

ii. For each population we form a new histogram
and calculate the bin having the maximum count. We
repartition each population based on the calculated
maximum value [Fig. 4(b), 4(c)].
iii. We successively apply the OTA on each of the

repartitioned populations of step ii to calculate two

Fig. 3. (a) Line segments detected using the LSD. (b) Remaining line segments after rejectingmost of the undesired line segments. (c) Line
parts fitted on the clustered line segments.
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thresholds tl and tr for each of the populations flhig
and flvig that separate these populations from the
rest of the initial histogram containing undesired
line segments.

iv. Finally, we disregard all segments with
lengths less than 0.1 of the maximum segment
length to minimize the uncertainty introduced by
small noisy segments.

The two line segment groups Sh and Sν resulting
after applying the above process are plotted in
Fig. 3(b). By direct comparison between Fig. 3(a)
and Fig. 3(b) it can be easily noticed that most of
the line segments that do not belong to the EI bound-
aries are ruled out. A small number of line segments
that are misregistered or belong to the EI content
still remain at this point. The error introduced by
these line segments will be further reduced at the
next stage of the proposed framework.

C. Clustering of Collinear Segments

In order to further reduce the remaining error from
the previous stage, collinear segments are automati-
cally clustered and each cluster is replaced by a
straight line fitted to the data in a least squares
sense.

In detail, a hierarchical clustering procedure is
used in order to automatically classify the line seg-
ments of each group into collinear clusters. For this
purpose we define a symmetric dissimilarity mea-

sure dm�li; lj� [12] for every pair of segments �li; lj�
as shown in Fig. 5(a). Let �si; ei� and �sj; ej� be the
end points of these segments, respectively. Then,
dm�li; lj� is defined as

dm�li; lj� � maxfd�si; lj�;d�ei; lj�;d�sj; li�;d�ej; li�g;
(1)

where d�p; l� represents the distance of the point p
from the line segment l. Moreover the definition of
dm�li; lj� is extended to the dissimilarity measure
between two clusters of collinear segments Cp and
Cq, as

dm�Cp;Cq� � minfdm�l; l0�g; l ∈ Cp; l0 ∈ Cq.

(2)

A variation of the hierarchical clustering techni-
que, [13] called single-linkage clustering, is used to
formulate the different clusters and the procedure
terminates as soon as the minimum dissimilarity
measure of the clusters exceeds a threshold value
dth. The value for dth is automatically calculated
through the following process:

i. The dissimilarity measure for every pair of
registered line segments is computed, and the histo-
gram for the resulting sequence fds�n�g is con-
structed as shown in Fig. 5(b).

Fig. 4. Histogram of the direction angles (a) of all detected line segments using the LSD algorithm, (b) of the line segments corresponding
to horizontal lines, and (c) of the line segments corresponding to vertical lines.
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ii. The first empty histogram bin is found and dth
is set equal to the maximum value of the previous bin
population.

This choice for dth is justified through the fact that
the dissimilarity measure between collinear and
noncollinear segments presents significantly differ-
ent values. Hence it is expected that the histogram
of Fig. 5(b) will be characterized by gaps, formed
by a number of empty bins between different groups
of fds�n�g. After clustering, a straight line is fitted to
the segments belonging to each collinear group hav-
ing the minimum mean distance from the end points
of these segments.

In Fig. 3(c), the fitted lines are plotted. The plotted
lines are limited to the extent of the line segments in
each cluster for illustration purposes. At this point
two groups of line equations are derived, denoted
as Lh and Lν, which will be used in the InIm rectifi-
cation process.

3. InIm Rectification Process

In this section we introduce the mathematical model
that was used to formalize the rectification process.
Moreover we provide the implementation details for
the InIm rectification case. The proposed algorithm
reconstructs an estimate of the ideal InIm Iid using
the acquired InIm Iac and the two groups of esti-
mated grid lines Lh and Lν provided by the process
described in Section 2.

3.A. Mathematical Model

As already mentioned in the introductory part of this
paper, the ideal Iid and the acquired InIm Iac are re-
lated through a perspective transformation. Suppose
that the grid lines of Iac have been precisely detected,
registered, and plotted as shown in Fig. 6. This figure
shows how these lines are transformed through a se-
quence of transformations, resulting in a square grid
with horizontal and vertical lines in Iid. It should be
noted that in Fig. 6, Iac is depicted with an exagger-

ated perspective distortion in order to make appar-
ent some important properties of the distorted grid.

According to the theory [6] each group of parallel
lines of the square grid in Iid has been transformed
into a set of concurrent lines in Iac, which intersect at
a single point, called vanishing point. The two van-
ishing points V1 and V2 are also shown in Fig. 6. The
line defined by the two vanishing points is called van-
ishing line. Since Iid is a similarity transformation of
Isi and Isi is an affine transformation of Iaf , then Isi
has a square grid like Iid, whereas Iaf ’s grid consists
of parallelograms. The perspective transform that
projects a point in Iac to a point in Iid is given by
Eq. (3):

x � H~x; (3)

where H is a 3 × 3 real value matrix denoting the
above mentioned perspective transformation, and x
and ~x denote the homogeneous three component co-
ordinate vectors for two related points in Iid and Iac,
respectively.

According to Liebovitz [14], the perspective trans-
formationH can be considered as the product of three
matrices of the same size given by Eq. (4)

H � HsHaHp; (4)

where Hp, Ha, and Hs represent a pure perspective,
an affine, and a similarity transformation, respec-
tively. To this end, Iid results after sequentially com-
puting two intermediate images, Iaf , and Isi, applying
transformations ofHp,Ha, andHs, as shown in Fig. 6.
This transformation breakdown structure con-
stitutes a simple approach for the estimation of
the resultant transformation matrixH by separately
evaluating each component matrix based on some
prescribed geometric relations between the corre-
sponding images.

According to [14] the pure perspective transforma-
tion matrix Hp is given by Eq. (5):

Fig. 5. (a) Geometric representation of the dissimilarity measure dm�li; lj� between two segments. (b) The histogram of fds�n�g. Values in
the first lobe correspond to collinear segments.
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Hp �

0
BB@ 1 0 0

0 1 0
l1 l2 l3

1
CCA; (5)

where l1, l2, l3 are the vanishing line parameters
measured in Iac.

Accordingly, the affine transformation matrix Ha
is given by Eq. 6:

Ha �

0
BB@

1
β − α

β 0
0 1 0
0 0 1

1
CCA; (6)

where parameters α and β are evaluated using the
line segment coordinates in Iaf grid and the length
ratio of their corresponding segments in Isi.

In detail letABCD be a parallelogram in the grid of
Iaf , which is mapped to the square AsBsCsDs after ap-
plying the affine transformation Ha shown in Fig. 6.
Then α and β are given by the coordinates of the two
intersection points of the circles with centers at
�cx1; cy1�, �cx2; cy2� and radii r1, r2 respectively, as
given by Eqs. 7–10:

�cx1; cy1� �
�
xAByAB − s21xBCyBC

y2AB − s21y
2
BC

; 0
�

�
�
xAByAB − xBCyBC

y2AB − y2BC
; 0
�
; (7)

r1 �
���� s1�xBCyAB − xAByBC�

y2AB − s2y2BC

���� �
���� �xBCyAB − xAByBC�

y2AB − y2BC

����;
(8)

and

�cx2; cy2� �
�
xACyAC − s22xBDyBD

y2AC − s22y
2
BD

; 0
�

�
�
xACyAC − xBDyBD

y2AC − y2BD
; 0
�

(9)

r2 �
���� s2�xBDyAC − xACyBD�

y2AC − s2y2BD

���� �
���� �xBDyAC − xACyBD�

y2AC − y2BD

����;
(10)

where �xAB; yAB�T � AB
���!

, �xBC; yBC�T � BC
���!

,

�xAC; yAC�T � AC
���!

, �xBD; yBD�T � BD
���!

, s1 � AsBs
BsCs

� 1,

and s2 � AsCs
BsDs

� 1.
Since the y coordinate of the center of both circles is

zero, it yields out that the two intersection points
have the same α and two opposite β values given
by Eq. (11), (12):

α � cx2 � cx1
2

� �r21 − r22�
2�cx2 − cx1�

(11)

β � � 1
2�cx2 − cx1�

×
���������������������������������������������������������������������������������������������������������
��r1 � r2�2 − �cx2 − cx1�2���cx2 − cx1�2 − �r2 − r1�2�

q
.

(12)

Matrix Ha is formed using only the non negative β
value [14], which leads to a simpler implementation.

Fig. 6. Rectification process.
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Finally matrix Hs, which defines a similarity
transformation between Isi and Iid, is given by Eq. 13:

Hs �
�

R
x0
y0

0 0 1

�0BB@ c 0 0
0 c 0
0 0 1

1
CCA; (13)

where c is a scaling factor, �x0; y0�T is a translation
vector, and R is the 2 × 2 rotational matrix

R �
�

cos θ sin θ
− sin θ cos θ

�
. (14)

The scaling parameter c is computed as c � ai∕as,
where as, ai are the EI edge sizes as mapped on Isi
and Iid, respectively, as shown in Fig. 6. It should
be noted that c is needed only in the case where
Isi has to be scaled to a target display device. Hence
ai can be calculated by using the LA and the LCD
pitch sizes. In a case where no scaling is required,
the scaling factor is c � 1.

Parameter θ is evaluated in such a way that the Isi
grid lines align to the grid lines in Iid. For the pur-
poses of our work, vector �x0; y0�T is set equal to zero.

B. Implementation Details

In most practical cases [6] the above mathematical
model cannot be directly applied. In detail, certain
augmentations are needed to compensate for the er-
rors introduced during the line segment registration
stage. These errors cause deviations in the values of
the ideal parameters of the grid lines in Iac, which
consequently converge within a small area rather
than intersect at a single point.

Moreover the errors in the coordinates of the ideal
vanishing points V1 and V2 will be propagated in
parameters l1, l2, l3 and will affect the grid in Iaf .
Eventually parallelograms in Iaf are transformed
into convex quadrilaterals with strong size fluctua-
tions due to the fact that not all the grid lines are
registered.

In order to compensate for the above issues we cal-
culate the intersection point for each pair of concur-
rent lines and the median of all intersection points is
taken as the vanishing point of the line set. The use
of the median values ensures that outliers have no
effect over the calculation of the vanishing point co-
ordinates and hence increases the robustness of the
proposed solution. The coordinates of the two esti-
mated vanishing points are used to produce the van-
ishing line in the form given by Eq. 15:

l1 · x� l2 · y� l3 � 0; (15)

where l1, l2, l3 ∈ R are used for constructing Hp. The
resulting transformation matrix Hp is applied on the
two line equation sets Lh and Lν, producing Lhn
and Lνn.

In the ideal case each of the derived line sets Lhn
and Lνn should contain lines with identical slopes

and sequential interline distances and should con-
struct a perfect parallelogram grid, as shown in Iaf
in Fig. 6. Any parallelogram of this grid can be used
to compute the transformation matrix Ha given by
Eq. (6). However in practical cases small deviations
in slope as well as in distance values result in a grid
that does not consist of perfect parallelograms. Be-
sides some lines have failed to be identified so the
grid is neither complete. For these reasons we esti-
mate themean affine EI and this is used for the com-
putation of Ha. For the mean grid parallelogram
estimation we first apply the following steps to each
of the Lhn and Lνn line sets:

i. We sort the lines according to their x–intercept
value for Lhn or y–intercept value for Lνn.

ii. We calculate the distance between sequential
lines in the set and construct a sequence of interline
distances denoted as fdng. Since the lines of the set
are not precisely parallel, for each line pair the mean
value of its slope is used as the slope of both lines for
this evaluation.
iii. We calculate the median value of sequence

fdng and denote it as dh or dν accordingly.
iv. We calculate the median value of the slope of

the line set and we denote it as sh or sν accordingly.

Finally we use two pairs of parallel lines with dis-
tances dh and dν and slopes sh and sν, as shown in
Fig. 7. The intersections of these lines define the
mean parallelogram ABCD, which corresponds to
ABCD in Iaf in Fig. 6. In order to calculate the affine
matrix Ha defined by Eq. (6) we first define
ϕh � arctan�sh�, ϕν � arctan�sν� and ϕ as shown
in Fig. 7.

Subsequently we derive AB and BC as

AB � dν
sin ϕ and BC � dh

sin ϕ . (16)

Next we consider that AB
���! � �xAB; yAB�T and BC

���! �
�xBC; yBC�T and deduce Eqs. (17–20):

xAB � AB cos ϕh � dν
sin ϕ cos ϕh (17)

yAB � AB sin ϕh � dν
sin ϕ sin ϕh (18)

xBC � BC cos ϕν �
dh

sin ϕ cos ϕν (19)

yBC � BC sin ϕν �
dh

sin ϕ sin ϕν. (20)
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Substituting Equations (17–20) in Eq. (7) and
Eq. (8), we conclude that:

�cx1; cy1� �
�
d2
ν cos ϕh sin ϕh − d2

h cos ϕν sin ϕν
d2
ν sin2 ϕh − d2

h sin
2 ϕν

; 0
�

�
�

d2
ν sin 2ϕh − d2

h sin 2ϕν
d2
ν�1 − cos 2ϕh� − d2

h�1 − cos 2ϕν�
; 0
�
(21)

and

r1 �
����dνdh cos ϕν sin ϕh − dhdν cos ϕh sin ϕν

�dh sin ϕh�2 − �dv sin ϕv�2
����

� dνdhj sin�ϕh − ϕν�j
j�d2

h�1 − cos 2ϕh� − d2
ν�1 − cos 2ϕν�j

. (22)

Finally substituting all trigonometric functions of
Eq. (21) and Eq. (22) as functions of tan ϕh � sh
and tan ϕν � sν, we derive:

�cx1; cy1� �
�
d2
νsh�1� s2ν� − d2

hsν�1� s2h�
d2
νs2h�1� s2ν� − d2

hs
2
ν�1� s2h�

; 0
�

(23)

r1 �
dhdν

��������������������������������������������������������
�1� s2ν��1� s2h��sν − sh�2

q
jd2

νs2h�1� s2ν� − d2
hs

2
ν�1� s2h�j

. (24)

In addition, from Fig. 7 we observe that AC
���! �

AB
���!� BC

���!
and BD

���! � BC
���!

− AB
���!

, so xAC � xAB � xBC,
yAC � yAB � yBC, xBD � xBC − xAB, and yBD �
yBC − yAB. In this way, substituting Eqs. (17–20) in
Eq. (9) and Eq. (10) and working in a similar way
as for Eqs. (21) and (22) we deduce that:

�cx2; cy2� �
�
sν � sh
2sνsh

; 0
�

(25)

and

r2 � jsν − shj
2sνsh

. (26)

Based on these calculations we derive the values for
α and β, which are substituted in matrix Ha given
by Eq. (6).

We finally evaluate the similarity transformation
matrix Hs given by Eq. (10). In order to calculate the
values for the rotational matrix R, which rotates Isi
to align its sides to the sides of Iid, we define two unit

vectors, v̂sh, and v̂sν, parallel to AsBs
������!

and CsBs
������!

,
respectively. The calculation for vectors v̂sh and v̂sν
yields:

v̂sh � AsBs
������!

‖AsBs
������!

‖
� Hαβ�1; sh�T

jHαβ�1; sh�T j
� �1 − αsh; βsh�T��������������������������������������

�1 − ash�2 � β2s2h
q

(27)

and

v̂sν �
�1 − αsν; βsν�T�������������������������������������
�1 − asν�2 � β2s2ν

p . (28)

Using v̂sh and v̂sν and the fact that v̂sh⊥v̂sν, we
rewrite Eq. (14) in the form:

R �
�

cos θ sin θ
− sin θ cos θ

�
�
�
v̂Tsh
v̂Tsν

−1
�
�
�
v̂Tsh
v̂Tsν

T
�

� � v̂sh v̂sν �. (29)

In a case where no scaling is required, c � 1 and Hs
takes the form:

Hs �
�

� v̂sh v̂sν � 0
0

0 0 1

�
. (30)

If scaling is required for a target display device, we
calculate scaling factor c based on the values of ai de-
rived from the LA and the LCD pitch sizes and the
value for as, which is the side length of AsBsCsDs. It is
evident from Fig. 6 that as can be written as:

a2
s � ‖AsBs

������!
‖
2 � ‖HαβAB

���!
‖
2
; (31)

where Hαβ is given by Eq. (32):

Hαβ �
�
1∕β −α∕β
0 1

�
. �32�

SubstitutingHαβ and AsBs
������! � �xAB; yAB�T in Eq. (31)

we derive as:

a2
s � d2

ν�s2ν � 1���1 − ash�2 � β2s2h�
β2�sν − sh�2

. (33)

Finally the complete equation for matrix Hs:

Fig. 7. Mean affine EI.
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Hs �
 

� v̂sh v̂sν � 0
0

0 0 1

!0BB@ c 0 0
0 c 0
0 0 1

1
CCA. (34)

Substituting Hp, Ha, and Hs in Eq. (4) we derive ma-
trix H, which is used for applying the compound
transformation on Iac to produce an estimate of Iid
denoted as Îid.

Concluding this section, it should be noted that
since not all the lines are detected and registered,
a number of issues arise during further processing
steps that require knowledge of the size and position
of each EI. To this end we introduce a method for re-
moving a small number of offending grid lines and
reconstructing the missing ones in order to provide
this additional information to later processing
stages. In detail a small number of offending lines
still exist after transforming the line equations Lh
and Lν from Iac into Îid. In order to remove these lines
we use their x or y intersect values, respectively, to

deduce their interline distances. For each line we cal-
culate its distances from all other parallel lines in the
group in multiples of ai and store these values in a
sequence fDig. If more than half of the sequence
fDig members are equal to an integer within a toler-
ance value of 0.1 · ai the line is considered to be part
of the grid. After identifying the grid lines, parallel
lines are inserted in distances of ai, hence recon-
structing the missing lines of the grid. The recon-
structed grid is shown in Fig. 8(g)–8(i).

4. Experiments and Results

In order to assess the performance of the proposed
algorithm we calculated the error in the estimation
of the rectification parameters l1, l2, α, β, and θ.
Furthermore we evaluated the geometric consistency
of the rectified InIms as described later in this
section.

A. Test InIms

A large number of different InIms were generated
using the ray tracing technique described in [15] with

Fig. 8. Three characteristic InIms. (a)-(c) 2D rendered images of three 3D objects. (d)-(f) Acquired InIms with the registered grid
superimposed. (g)-(i) Rectified InIms along with the reconstructed grid.
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different scenes, EI sizes, texture levels, and color
gradients. Different noise levels and distortion an-
gles were used for assessing the performance of the
algorithm. The images were perspectively distorted
with known distortion matrices; therefore their ideal
rectification parameters are known. In addition
three different noise levels were introduced in each
of the InIms in order to objectively assess the quality
of the rectified grid produced by our framework in the
range of 20 dB–30 dB with respect to the noiseless
InIm. This approach was followed as it provides com-
plete control over the introduced InIm distortion and
knowledge of the ideal rectification parameters to be
used as ground-truth values. It should be noted that
no objective lens distortions are accounted for in the
computer generated InIm experiments.

B. Parameters Evaluation

As already stated, our framework estimates param-
eters l1, l2, α, β and θ, which are required for the rec-
tification of the InIm. Parameters l1, l2 represent the
vanishing line coordinates in homogeneous represen-
tation, while α and β are the metric correction
parameters and θ is the final rotation angle.

In order to assess the geometric consistency of the
rectified InIm, we introduce two additional evalua-
tion parameters that can be measured on the recti-
fied grid, namely the angles of the adjacent edges
of the EIs and the edge ratio for each EI. In detail
we measured:

1. All four internal angles for each EI. We form a
sequence fωig of the angles in all the EIs in the
rectified grid.

2. The four side length ratios, formed by consid-
ering each pair of adjacent edges of each EI. We form
a sequence fλig of the adjacent edge ratios in the
rectified grid.

As all the InIms used in the experiments had a rec-
tangular EI grid structure, the ground truth values
for these parameters are ωid � 90° and λid � 1. In
this section we present the calculated mean value
and standard deviation for all the angles and edge
ratios in each InIm.

C. Results

The calculated parameters used in the rectification
matrices were evaluated over the complete set of
the test InIms described previously. Here we present
the evaluation results over three characteristic
scenes for which the 2D rendered images are shown
in Figs. 8(a)–8(c). In Figs. 8(d)–8(f) we also show the
acquired InIm along with the registered lines as they
are calculated after the line segment clustering pro-
cess. In Figs. 8g–8(i) we show the rectified InIms
along with the reconstructed grid lines as described
in Section 3.

For each of these InIms we considered different
noise levels and calculated the absolute error percen-
tages for the evaluated parameters used in the rec-
tification process. The results for the three scenes are

summarized in Tables 1–3. As shown in Tables 1–3
the error for all the parameters used in the rectifica-
tion pipeline did not exceed 4% for the worst case sce-
nario where the InIms had high noise levels that
reduced the InIm quality to 20 dB. For medium noise
levels and InIm quality around 25 dB no parameter
exceeded a maximum absolute error of 3% while for
low noise levels and InIm quality at 30 dB the max-
imum absolute error for all parameters did not ex-
ceed 1.2%. However it should be noted that since
not all parameters have the same impact to the error
they introduce in the final rectified image these per-
centages do not provide an detailed representation of
the final rectification error.

For this purpose we evaluated the geometric
consistency of the rectified grid lines, as already de-
scribed, by assessing the deviation of the side length
ratios and the internal angles of the rectified EIs.
The results for these measures are shown for each
image in Tables 4–6. The results reported in
Tables 4–6 show that the calculated mean internal
angle value �ωi is 90° regardless of the noise levels.
In addition the standard deviation value σωi

in all

Table 1. Error Percentages for the Rectification Parameters of the
InIm in Fig. 8(g)

l1 l2 α β θ

noiseless 0.2295% 0.4590% 0.6771% 0.0112% 0.3817%
30 dB 0.4812% 0.0210% 0.5834% 0.0376% 0.5273%
25 dB 0.3966% 0.1782% 0.5795% 0.0170% 0.6057%
20 dB 1.1237% 3.9952% 1.0681% 0.0810% 1.1398%

Table 2. Error Percentages for the Rectification Parameters of the
InIm in Fig. 8(h)

l1 l2 α β θ

noiseless 0.3698% 1.0473% 1.8463% 0.0104% 0.1234%
30 dB 0.5664% 1.1408% 0.6657% 0.0158% 0.3419%
25 dB 0.3006% 1.3307% 0.4325% 0.0467% 0.7342%
20 dB 3.8497% 0.9162% 0.6294% 0.2491% 2.4567%

Table 3. Error Percentages for the Rectification Parameters of the
InIm in Fig. 8(i)

l1 l2 α β θ

noiseless 1.1759% 0.6608% 1.6784% 0.0123% 0.1374%
30 dB 0.3683% 1.1985% 0.5588% 0.1109% 0.3831%
25 dB 0.1038% 2.9553% 0.0585% 0.0456% 0.4179%
20 dB 1.3484% 1.9558% 1.7878% 0.3300% 0.4517%

Table 4. Geometric Consistency Evaluation Parameters for the
InIm in Fig. 8(g)

�ωi � σωi
�λi � σλi

noiseless 90.000°� 0.049° 1.005� 0.010
30 dB 90.000°� 0.050° 0.999� 0.011
25 dB 90.000°� 0.052° 1.009� 0.012
20 dB 90.000°� 0.070° 1.010� 0.014
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cases and for all different noise levels did not exceed
0.21°. The error trend for the mean integral angles is
shown in Fig. 9. Finally themean side length ratios �λi
for the EIs are in all cases within a very narrow
range around the nominal value λid with a small
standard deviation σλi , which in the worst case sce-
nario is 24 · 10−3. The error trend for the mean side
length ratio is shown in Fig. 10.

4.D. Validation with Optically Acquired InIms

An additional set of optically acquired InIms was
also used to demonstrate the robustness of the pro-
posed method over real world data. For the optically
acquired InIms, we adopted the pickup process used
in [8] with the same distortion parameter settings.

Pincushion and barrel distortions were corrected
using the camera firmware of Canon EOS-500D,
which was used in our case and are not considered
for correction in the presented rectification frame-
work. It should be noted that nowadays once the
characteristics of the camera objective lens and the
camera type are known, the barrel and pincushion
distortions can be corrected with a variety of soft-
ware toolkits as already reported in [8]. Here we pre-
sent the results for an optically acquired InIm of a
dice shown in Fig. 11(a). The acquired InIm with
the superimposed grid is shown in Fig. 11(b) while
the rectified InIm with the reconstructed grid is
shown in Fig. 11(c). The parameter values summar-
ized in Tables 7–8 show that the results of the algo-
rithm for optically acquired InIms are in line with
the results in the computer generated InIms.

5. Conclusions

In this paper we presented a framework that per-
forms InIm rectification in order to compensate for
a number of situations in an InIm acquisition device
where the LA and the CCD planes are not parallel.

One of the strong features of the proposed frame-
work is the minimal set of required parameters that
should be entered in the system beforehand. More
precisely the required parameters are the LA and
LCD pitch sizes. It should be noted that these param-
eters are needed only in the case where scaling of the
rectified InIm to a display device is necessary. The
accuracy of the proposed framework is validated
through the geometric consistency of the rectified
InIm grids over a set of computer generated and
optically acquired InIms with different complexity,
texture, and noise characteristics. The results show

Table 5. Geometric Consistency Evaluation Parameters for the
InIm in Fig. 8(h)

�ωi � σωi
�λi � σλi

noiseless 90.000°� 0.097° 1.0070� 0.0066
30 dB 90.00°� 0.11° 1.010� 0.010
25 dB 90.00°� 0.19° 0.999� 0.016
20 dB 90.00°� 0.21° 1.019� 0.019

Table 6. Geometric Consistency Evaluation Parameters for the
InIm in Fig. 8(i)

�ωi � σωi
�λi � σλi

noiseless 90.000°� 0.060° 0.996� 0.011
30 dB 90.00°� 0.10° 1.009� 0.013
25 dB 90.00°� 0.12° 1.009� 0.017
20 dB 90.00°� 0.16° 0.999� 0.024

Fig. 10. Mean side length ratio versus image quality.

Fig. 9. Mean internal angles versus image quality.
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only small deviations from the ideal internal angles
values while their mean value is always equal to ωid.
Specifically our framework differentiates from pre-
viously proposed solutions [8] as it utilizes all de-
tected line segments of the InIm to perform the
rectification of the InIm grid. The large number of
the InIm grid line segments that are detected
through the use of the LSD algorithm provides
strong statistical support to the registration of grid
lines through the clustering process. This statistical
approach greatly reduces the number of outliers and
practically minimizes the introduced error in later
stages of the rectification framework. The accuracy
of our framework is further increased through the
method used for determining the vanishing points.
Using more than one pair of concurrent lines our fra-
mework reduces the error in the localization of the
vanishing points. It should be noted that small errors
at the vanishing point detection process may result
in poor rectification of the InIm grid as the determi-
nation of these points affect the whole InIm.

The robustness of the proposed framework is also
validated through the fact that the accuracy of
rectified grids are almost invariant despite the use
of different scenes as well as different noise charac-
teristics. The high fault tolerance of our framework is
also attributed to the statistical nature of the proce-
dures utilized for determining the line equations and
the vanishing points. The use of the LSD for the LSD
and registration process and the introduced metric
for the determination of collinear segments further

enhance the robustness of the proposed framework
by ruling out most of the non grid line segments.

Moreover the construction and application of a sin-
gle transformation matrix H instead of the sequen-
tial application of the intermediate matrices of
Eq. (4) greatly reduces the time needed for rectifying
an InIm. Additional time performance gain is
achieved through the use of low complexity algo-
rithms like the LSD which is used for the LSD
and registration process. The proposed framework
constitutes a valuable tool for all InIm processing
tasks, providing accurate and robust rectification
results without any user interaction.
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