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Abstract— We present a novel decentralized Wireless Sensor 
Network (WSN) algorithm which can estimate both the speed and 
direction of an evolving diffusive hazardous phenomenon (e.g. a 
wildfire, oil spill, etc.). In the proposed scheme we approximate a 
progressing hazard’s front as a set of line segments. The 
spatiotemporal evolution of each line segment is modeled by a 
modified 2D Gaussian function. As the phenomenon evolves, the 
parameters of this model are updated based on the analytical 
solution of a Kullback – Leibler (KL) divergence minimization 
problem. This leads to an efficient WSN distributed parameters 
estimation algorithm that can be implemented by dynamically 
formed clusters (triplets) of collaborating sensor nodes. 
Computer simulations show that our approach is able to track 
the evolving phenomenon with reasonable accuracy even if a 
percentage of sensors fails due to the hazard and/or the 
phenomenon has a time varying speed. 

Keywords- Environmenal hazard; predictive modeling; WSN; 
Spatio-temporal evolution; Kullback-Leibler divergence 

I.  INTRODUCTION  
Predicting with reasonable accuracy the spatiotemporal 

evolution of a diffusive hazardous phenomenon (such as a wild 
fires, tsunamis, oil slick, etc.) is of paramount importance since 
it helps the authorities to organize efficiently and effectively 
their response (hazard suppression, possible evacuations etc.). 
Research efforts around the globe are focusing in developing 
hazard-specific predictive models. However, most of these 
mechanistic models depend on a large number of space- and 
time-varying parameters which are difficult or even impossible, 
to estimate in real time, making model predictions deviate 
significantly from reality. To address this limitation many 
researchers have proposed architectures which attempt to 
integrate recent sensor measurements and simulation based 
predictive modeling into closed loop systems. Most of these 
works rely on remote sensing, i.e. measured data (e.g. satellite 
spectral images) are used to calibrate periodically simulation 
models in order to minimize model prediction errors. These 
methods, also known as Dynamic Data Driven Assimilation, 
have recently drawn the attention of the scientific community 
due to their expected high societal impact [1-4]. 

Unfortunately, in many cases, satellite images, or image 
data in general, is not available, or may be inappropriate for 
detecting a certain diffusing hazard. In such cases, Wireless 
Sensor Networks (WSNs), that are becoming a mature state of 
the art technology due to their rapidly dropping cost, may 

provide a viable alternative for environmental monitoring 
applications, especially if the quality of the results they provide 
does not heavily depend on their node density (sensors per 
square kilometer).  

Recently, a number of collaborative WSN-based methods 
have been proposed for detecting the boundary line of a 
diffusing hazard [5-7]. Their main objective is to identify at 
each time step the sensor nodes located closest to the evolving 
hazard’s front line. Despite their demonstrated capability to 
delineate the area affected by a hazard these schemes suffer by 
construction from the severe limitation that their achieved 
accuracy is proportional to the WSN nodes density (requiring 
thousands of sensors per square kilometer), which renders them 
impractical today even for small-scale environmental 
monitoring applications. Furthermore, since they do not 
provide any information about the evolution characteristics of 
the hazard (e.g. direction and speed) they cannot be used for 
decision support based on predictive modeling. 

A hazard's front line can be approximated as a piecewise 
linear function. Each line segment of this curve (local front) 
can be adequately characterized using a small number of 
parameters (location of segment’s end points, orientation angle 
and propagation speed). In this work we model the 
spatiotemporal evolution of a front’s line segment by a 
modified 2D Gaussian function. This approach allows us to 
treat the estimation of local front parameters as a model 
updating problem which can be solved analytically [8]. We 
show here how this updating can be implemented by an in-
network processing scheme which forms dynamically small 
clusters (triplets) of cooperating sensor nodes. Processing at 
each sensor node is "light" and fast since it amounts to 
computing parameter updates based on closed form algebraic 
expressions. We show through extensive simulations, that the 
proposed scheme can estimate accurately the time varying 
parameters (angle and speed) of the local front even if the 
WSN is not very dense and/or a large percentage of its sensor 
nodes have failed during the passage of the hazard. To the best 
of our knowledge this is the first attempt to use a fully 
decentralized WSN to implement in-network predictive 
modeling of the spatiotemporal evolution of a hazard's local 
front line. Our work shows that it is possible to make accurate 
local predictions even by using low density WSNs, and forms 
the basis for developing WSN-supported Dynamic Data Driven 
Application Systems [1,2] for large-scale environmental 
monitoring and hazard response management. 

This work is partially supported by an “Hrakleitos II” grant co-financed by 
national (Greek General Secretariat for Research and Technology) and EU 
funds. The authors acknowledge the support of the funding agency.  
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Figure 1.  A modified 2D Gaussian and its contour plot. 

The rest of the paper is organized as follows: In section II 
we present the justification for using modified 2D Gaussian 
functions to model the spatiotemporal evolution of a diffusing 
phenomenon and present an in-network processing algorithm 
for estimating their parameters. Experimental validation results 
are presented and discussed in section III. Finally our findings 
are summarized and work in progress is outlined in section IV. 

II. MODELING AND ALGORITHM DESIGN 

A. Elliptical spatiotemporal evolution model for hazards 
Many researchers support the notion that the spatiotemporal 

evolution of diffusing phenomena initiated from a single point 
source can be approximated by an evolving ellipsoid with a 
principal axes ratio depending on area prevailing conditions [9-
11] (e.g. wind direction and wind speed for wildfires, water 
stream speed and direction for oil slicks etc.).  

For simulating elliptical spatiotemporal evolution we are 
introducing the use of a modified 2D Gaussian function whose 
shape and orientation can be controlled by assigning 
appropriate values to the covariance matrix elements. Figure 1 
shows the spatiotemporal evolution of a hazard initiated from 
single point as this is modeled by the proposed function: 
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. In this modeling, ( )f x  

corresponds to time and the larger the time values (vertical z-
axis) the larger the area that is covered by the corresponding 
ellipsoidal contours on the x-y plain (see Figure 1). The factor 

1
2/ 2A    corresponds to the largest value that ( )f x can take 

(modeled time span). The modified 2D Gaussian function (1) 
has all the properties needed to models spatiotemporal 
evolution, while also keeping intact all the advantages that 2D 

Gaussians offer i.e. adjustable shape, simple parameterization 
and ability to obtain analytical results. 

B. Sensor network assumptions 

Before proceeding with the presentation of the 
collaborative algorithm let us state the assumptions regarding 
to WSNs adopted in this work: 

Deployed sensors are assumed to be stationary with their 
positions known. A sensor S, is able to communicate directly 
only with its neighbors i.e. the sensor nodes located within a 
circular region of radius R from its location. In a valid 
deployment each sensor node is assumed to have at least 2 
neighbors. The clocks of the sensor nodes do not need to be 
synchronized. Finally we assume that a sensor node may fail at 
any given time due to the hazard’s propagation. Once a node 
fails it stops participating in the collaborative algorithm. 
Failures are considered permanent. 

C. Key elements of the proposed collaborative approach 
The main idea of the in-network processing algorithm is as 

follows: During the evolution of a diffusive phenomenon the 
deployed sensor nodes are dynamically organized into ad-hoc 
local clusters of three nodes each (triplet). The sensor nodes of 
a formed cluster collaborate to update the local front evolution 
belief model of the Master i.e. the node who initiated the 
formation of the cluster. The updated model is then propagated 
forward to new nodes in the same direction as the 
phenomenon that evolves.  

How the model of the Master (prior model) is updated 
depends on the solution of a KL-divergence [12] minimization 
problem. The KL-divergence is commonly used to assess 
dissimilarity between two probability density functions. In 
essence the proposed model updating procedure corresponds 
to finding among the modified 2D Gaussian models the one 
that has minimum KL-divergence (minimum dissimilarity) 
from the prior model and explains best the most recent sensor 
field measurements. Minimizing the KL-divergence to the 
prior model is justified since it is expected (for diffusing 
hazardous phenomena) that for short time periods the local 
model parameters change smoothly. We have formulated and 
solved this optimization problem analytically in [8]. The 
resulting algebraic expressions can be used to find the updated 
model parameters without the need for using floating point 
arithmetic, a fact that respects the energy constraints of WSNs. 
We provide below the details of the distributed in-network 
processing steps for model parameter estimation. 

D. The collaborative in-network processing algorithm 
Each sensor keeps locally the following information about 

itself: {ID, Location, Detection Status Flag, Sensor Status 
Flag, Prior Model Parameters}. The Prior Model is 
represented by the covariance matrix   and the direction 
parameter  which indicates the evolution direction of the 
local front (see text below for details). In addition, each sensor 
keeps locally the following information about each one of its  
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Figure 2.  Master’s 0S local front model updating procedure. 

neighbors: {ID, Location, Time of (hazard) Detection, 
Detection Status Flag, Sensor Status Flag}. 

Sensor states, self-organization into clusters: A sensor may 
assume one of the following three states: 

Quiescent: Default state. The Sensor Status Flag (SSF) has 
value 0. 

Master: It is responsible for the estimation and the updating of 
the local front parameters. The SSF of a Master has value 1. 

Slave: It is responsible for monitoring the phenomenon upon 
request from a Master. The SSF value for Slave sensors is 2. 
Upon detection of the phenomenon, a slave’s Detection Status 
Flag (DSF) becomes 1 (default value is 0) and is broadcasted 
to its neighbors. A slave may serve more than one Masters at 
any given time. 

To facilitate the presentation of the proposed distributed 
algorithm we will use a simple running example. In Figure 
2(a) we assume w.l.o.g. that the real local front is the red 
dashed curve and its local speed and direction are indicated by 
the length and direction of the corresponding red vector. In 
this example we assume (w.l.o.g.) that a sensor is detecting the 
phenomenon when it is reached by the evolving front. 

When the front line reaches sensor 0S say at time 0t  it 
detects the phenomenon, sets its DSF = 1, initializes an 
internal timer and checks its SSF flag. If SSF = 0 (state = 
Quiescent) and at least two of its neighbors (sensors inside its 
communication region, i.e. 1S , 2S , 3S and 4S in Figure 2(a)) 
have not detected the phenomenon yet (DSF = 0) 0S starts the 

following procedure to check if it satisfies the necessary 
conditions to become a Master and forms a cluster.  

Forming a local cluster: Sensor node 0S uses its current 
(prior) spatiotemporal evolution model (a modified 2D 
Gaussian) and its location’s coordinates (x0, y0) and derives 
the equation of a line that is perpendicular to its prior model’s 
major axis and passes from its location (see figure 2(b)). This 
line separates the plane in two half planes (positive and 
negative). After the line derivation, 0S checks the value of the 
direction evolution parameter 0 . The default value of this 
parameter is 0 and indicates that the front’s evolution direction 
is unknown. 
 if 0 0  (example’s case): 0S  checks if it has at least two 

neighbors that have not detected the phenomenon and 
belong to the same half plane. If it does, it decides to 
become a Master. It changes its SSF to 1 and broadcasts a 
"Master Declaration Message (MDM)" {ID = 0S , SSF = 
1} which sets the SSF of its neighbors to 2 (see Figure 
2(b)). 

 if 0 1  ( 1 ): 0S checks if it has at least two neighbors 
within the positive (negative) half plane. If it does, it 
decides to become a Master. It changes its SSF to 1 and 
broadcasts a "Master Declaration Message (MDM)" {ID 
= 0S , SSF = 1} which sets the SSF of its neighbors to 2.  

If 0S does not satisfy any of the aforementioned conditions it 
decides not to become a Master. It broadcasts a hazardous 
event “Detection Message (DM)” {with ID = 0S } and leaves 
its SSF unchanged. 0S ’s neighbors when they receive the DM 
they update the information related to 0S  in their 
neighborhood local tables.   

In the presented example 0S satisfies the conditions to 
become a Master and broadcasts an MDM. Its neighbors 
( 1S , 2S , 3S and 4S in Figure 2(b)) when they receive this 
message change their SSFs from 0 to 2 and become 0S ’s 
slaves.  

Now 0S waits until it receives two hazardous event 
Detection Messages (DM) from two neighbors. Let's assume 
that at Master's 0( )S  internal clock times 

01t and 02t 02 01( . . . .)t t w l o g , 0S receives the DMs from 1S and 

2S respectively. Then Master 0S  checks if these sensors 
belong within the same half plane as determined by the 
aforementioned line.  

 If they do, the Master is ready to start the local front 
parameters updating procedure (to be described below). 

 If they do not (as in the example), the Master waits to 
receive one more DM from one of its neighbors. 



By the time ( 03t ) let’s say that Master 0S receives a DM 
from 3S which enables him to start its prior model updating 
procedure. 

The Master uses its current (prior) spatiotemporal 
evolution model (a modified 2D Gaussian) and assumes that 
the local front at its neighborhood can be approximated by a 
line segment that is perpendicular to the major axis of its 
available prior model (see Figure 2(b)) and its length is equal 
with 0S ’s communication diameter (2R). The speed of motion 
and the direction, which are determined from the prior model, 
are denoted by the vector that is perpendicular to the assumed 
front. Each point on this front evolves as indicated by the prior 
elliptical evolution model of the Master. This assumption is 
well justified and has been extensively used by many 
researchers [9-11] . 

Model updating procedure: Finding the intersection points. 
Master 0S  uses the location of slaves 2S and 3S  (stored in its 
neighborhood table) and calculates the two points 02 03( , )p p  
where these two sensor locations project on the assumed local 
front’s line segment (see Figure 2(c)). It is assumed that the 
phenomenon is best captured by the Master's prior modified 
2D Gaussian model at each point on the assumed front 
segment, and therefore also for projection points 02p , 03p  as 
well. The Master 0S computes the distances between 
sensor 2S , 3S  locations and the corresponding projection 
points 02 03( , )p p , to be called 2d and 3d  respectively.  
Subsequently, Master 0S estimates two new 2D modified 

Gaussians, namely 02

02

pf  and  03

03

pf  (see Figure 2(c)) which: (i) 

are centered at the projection points 02 03( , )p p respectively, (ii) 
have minimum Kullback-Leibler divergence from the Master’s 
prior model, and (iii) assign at the corresponding slave 
locations, 2S and 3S , time values equal to the measured by the 
Master time differences 02t and 03t respectively. The direction 
of the major axes of the two new 2D modified Gaussians are 
the same to that of the prior model of the Master but their rate 
of spread may be different, as indicated by the size of the two 
small arrows originating at the two projection points 

02 03( , )p p in Figure 2(c). In [8] we present the formulation and 
solution of the KL optimization problem leading to closed 
form expressions for updating the model parameters. 

Estimating the new local front’s direction: Master 0S checks 
its table to find out which one of the two used Slaves ( 2S , 3S ) 
has detected the phenomenon most recently (it is 3S  in our 
example w.l.o.g.). The location of this sensor is for sure one 
point from where the local front line passes at time 03t  (see 
green contour in Figure 2(c)). A second point of the local front 
is estimated as follows: Master 0S  calculates, using the 

updated modified Gaussian model 02

02

pf , the point on that 

model's major axis reached after 03t  (marked by a black dot in 
Figure 2(d)). This point and the location point of 3S are equi-
temporal (both are reached by the front at time 03t ) and thus 
define an estimated local front line segment at the specific 
time instant. 

Model selection: One of the two models, either 02

02

pf  or 03

03

pf , 
will be used as the new spatiotemporal evolution model for the 
newly formed local front line segment (hard decision). 
Assuming smooth model changes, the algorithm selects among 
them the one with the smaller KL-divergence from the prior 
model of the Master 0Sf , rotated so that its major axis is 
perpendicular to the new local front's line segment (in our 
example the selected model is 03

03

pf ). The new rate of spread 
and direction (same as major axis) of this new front are 
determined from the updated model parameters. 

To update the evolution direction parameter 0 , Master 

0S checks in which half plane (positive or negative) belong the 
slaves which “helped” him to update the model ( 2S and 3S  in 
our example) and assigns the appropriate value (1, -1) to  0 . 

Model propagation: After updating the prior model, Master 
0S sends the new model information to the helper-slave which 

detected the phenomenon most recently (it was 3S  in our 
example), and asks it to become the new Master. If 3S  
satisfies the aforementioned necessary conditions (see 
paragraph Forming a local cluster) it accepts the responsibility 
and returns a confirmation message to 0S . At this point, 0S  
broadcasts a "release slaves" message to all its neighbors and 
if the recipients are not "enslaved" by some other Master(s) 
they change in turn their SSF to 0, so that they may become 
Masters themselves in the future. If 3S  does not satisfy the 
necessary conditions to become the new Master, it rejects the 
current Master's offer forcing 0S  to try the same exact 
negotiation with the second helper (node 2S  in our example). 
If 2S  also fails to become the new Master, 0S  gives up with 
the helpers and asks all its slaves to propagate the updated 
model information to their neighbors, releases them, and the 
algorithm repeats from the beginning. 

III. EVALUATION METHOD AND RESULTS  
We present in this section simulation results that 

demonstrate the ability of the proposed distributed WSN 
algorithm to estimate accurately the direction and speed of a 
propagating hazard’s local line front. Specifically, we have 
conducted the following experiments:  

Experiment 1: This experiment was designed to demonstrate 
how the algorithm performs under different sensor node 
densities and node failure probabilities (equal to 0, 0.1, 0.2, 
0.3 respectively). As node failure we consider the inability of a 
sensor node to participate in the distributed algorithm. In this  



 
Figure 3.  Matlab simulator snapshot. Red (blue) crosses denote sensors which 
have (have not) detected the evolving front (red circle). The line segment is 
updated through the cooperation of the three sensors indicated by the arrows 
in the right side panel. The ellipsoid is the contour plot of the updated 2D 
Gaussian Model which describes the spatiotemporal evolution behavior of the 
specific line segment (local front). 

experiment the diffusing phenomenon front line was modeled 
as a circle of fixed center but with a radius that is increasing at 
a predetermined constant rate (equal to 1.5 meters/min). 

Experiment 2: This experiment was designed to demonstrate 
the ability of the proposed algorithm to estimate the evolution 
parameters (speed and direction) of a time varying front, under 
different sensor node densities and failure probabilities. The 
front line of the diffusing phenomenon is again modeled as a 
circle with fixed center and increasing radius, but of time 
varying rate. More specifically, the speed at which the radius 
of the circle is increasing is initially 0.5 meters/min and then 
starts becoming larger with a constant rate until it reaches its 
maximum value (3.5meters/min) in the middle of the 
deployment area. Then the speed value starts to decrease at the 
same rate until it comes back to its original value. In that 
manner, when the front reaches the edge of the deployment 
area its speed will be again equal to its initial value (0.5 
meters/min).    

To simulate the behavior of our algorithm we have 
developed a fully parameterized Matlab based WSN simulator 
which allows us to simulate scenarios with different: sensor 
node densities, deployments strategies, sensor node failure 
probabilities and front evolution characteristics (different 
shapes and speeds).  

The network densities used in both experiments were  
5x10-5, 7.5x10-5 and 10-4 sensor nodes per square meter which 
correspond to 50, 75 and 100 pseudo-randomly deployed 
sensor nodes within a square area of 1km2 respectively. For 
each density value we run 30 simulations differing only in 
terms of the sensor nodes deployment. The same 30 sensor 
node deployments per density were used in both experiments. 
Furthermore, in order to guarantee that we have a fully 
connected network for each density scenario, the sensor 
communication radius was set to R=150m and was assumed to 
be the same for all sensor nodes.  

In order to evaluate the accuracy of the proposed 
algorithm, we compared the local front estimates (in terms of 
direction and speed) to the known ground truth. To estimate  

 
Figure 4.  Experiment 1 results. Distribution of the direction angle error under 
different scenarios. Each panel corresponds to a different probability of faulty 
sensors.  

 
Figure 5.  Experiment 1 results. Distribution of the speed error under different 
scenarios. Each panel corresponds to a different probability of faulty sensors.  

the direction error we calculated the angle of two vectors: the 
vector that is perpendicular to the estimated front line segment 
and the vector perpendicular to the tangent of the circle 
(modeling the hazard) at the middle point of the corresponding 
arc (see Figure 3). For a model the speed is estimated as the 
ratio /s t  , where '

112 is   and ' 2
11i is the variance element 

of the diagonal covariance matrix which results after rotating 
i such as the major axis of the corresponding 2D modified 

Gaussian is aligned with the horizontal x-axis. If we call the 
rotated model 'f  then ' ( )t f s   . 

Figures 4 and 5 present the boxplots summarizing the 
distribution of the angle and speed estimation errors 
respectively for experiment 1. For the generation of each 
boxplot we considered as sample points all front line segment 
updates for the 30 runs of the corresponding scenario (i.e. with 
a specific number of sensor nodes deployed and probability of 
node failures).  As observed from the figures the distribution 
of errors seems to be insensitive to the density and failure 
probability variations. This was also confirmed by comparing 
pairwise the means of the boxploted densities using Student’s 
t-test. For all cases the differences of the means were deemed 
insignificant at the 0.05 significance level.  

Table 1 provides for each simulation scenario (30 runs) the 
total number of updates and the mean number of messages per  



TABLE I. EXPERIMENT 1: TOTAL NUMBER OF UPDATES AND MEAN NUMBER 
OF MESSAGES PER MODEL UPDATE FOR EACH SIMULATION SCENARIO 
CONSIDERED (30 RUNS). 

 

 
Figure 6. Experiment 1: Total number of updates and mean number of 
messages per model update as a function of the faulty sensor probability (first 
row of panels) and as a function of the deployed sensor nodes (second row) 

model update required by the proposed algorithm. Figure 6 
presents a graphical representation of the information in Table 
1 which helps us visualize the trends of the total number of 
updates and the mean number of messages per model update 
as the number of the deployed sensor nodes decreases and the 
faulty sensor probability increases.  

As observed from Figure 6, for each density scenario as the 
number of faulty node probability increases the total number 
of model updates decreases (top left panel). This behavior 
could be easily explained if we consider that: a) increasing the 
faulty sensor probability implies a reduction of the functional 
sensor nodes which participate in the in-network algorithm in 
the same area and therefore implies a reduction of the 
network’s density, b) faulty sensors may lead to the formation 
of “dummy” clusters, i.e. clusters where sensor node 
malfunctions occurring within render the Master unable to 
update its model parameters. Another important observation is 
that as the network’s density decreases so does the number of 
model updates for all simulated probability of faulty sensor 
scenarios (bottom left panel). This can be justified since a 
smaller number of sensor nodes in a given area implies fewer 
neighbors within a sensor’s communication range. The 
reduced number of neighbors in turn implies that it becomes 
more difficult for a Master to find at least one of its slaves 
(which participate to its model updating procedure) to satisfy 
the necessary conditions for becoming a Master (see section II 
Forming a local cluster). When a Master cannot find a new 
qualified Master, it is forced to broadcast a message to its 
slaves so that they propagate its updated model to their 
neighbors (see section II Model propagation). This model 
propagation procedure increases the mean number of  

 
Figure 7. Experiment 2 results. Distribution of the direction angle error under 
different scenarios. Each panel corresponds to a different probability of faulty 
sensors.  

 
Figure 8. Experiment 2 results. Distribution of the speed error under different 
scenarios. Each panel corresponds to a different probability of faulty sensors. 

messages per model update (bottom right panel). Finally, the 
number of messages exchanged (wasted) within the formed 
“dummy” clusters explains why the mean number of messages 
per update becomes larger as the probability a sensor is faulty 
increases (top right panel). 

Figures 7 and 8 summarize the distribution of the 
estimation error for the direction angle and the speed for each 
simulation scenario (30 runs) for experiment 2. As we observe 
from the provided boxplots direction angle and the speed 
errors do not seem to change significantly between scenarios. 
This observation was confirmed also by applying pairwise 
Student t-tests for the means at the 0.05 level of significance. 

Finally Table 2 and Figure 9 (in correspondence to Table 1 
and Figure 6) provide for experiment 2 the data and the 
graphical representation respectively of the total number of 
updates and the mean number of messages per model update. 
The interpretation of these results is similar to that of 
experiment 1 results. 

In summary, the presented results suggest that the proposed 
WSN collaborative algorithm manages to provide good quality 
local estimates of the evolving hazard’s front parameters 
(direction and speed) under a variety of different simulation 
scenarios.  Furthermore its accuracy is insensitive to changes 
in sensor density and sensor failure probability making it a  



TABLE II. EXPERIMENT 2:  TOTAL NUMBER OF UPDATES AND MEAN NUMBER 
OF MESSAGES PER MODEL UPDATE FOR EACH SIMULATION SCENARIO 
CONSIDERED (30 RUNS). 

 

 
Figure 9. Experiment 2: Total number of updates and mean number of 
messages per model update as a function of the faulty sensor probability (first 
row of panels) and as a function of the deployed sensor nodes (second row). 

realistic approach for large scale environmental monitoring 
applications.  

As we have mentioned in the introduction there are 
recently several interesting in-network processing schemes 
proposed for estimating and tracking the boundaries of an 
evolving “object” [5-7]. Apart from using orders of magnitude 
more sensors per square kilometer, these schemes do not 
intend to estimate the local front parameters, and their target is 
not predictive modeling (of local evolution’s direction and 
speed). Therefore, since the objectives of the two lines of work 
are quite different we have not attempted a performance 
comparison to such methods, which would be inherently 
difficult to perform anyway due to the different setup and 
WSN related assumptions.   

We should mention however, that in contrast to related 
works [5-7] our approach works with reasonable sensor node 
densities, allows for sensor node failures (that are certainly 
expected in extreme environmental conditions) and does not 
require the clocks of sensor nodes to be synchronized. It is 
known that clock synchronization is difficult to achieve even 
in medium scale WSNs and under normal conditions.  

IV. CONCLUSIONS 
We have presented a novel collaborative WSN algorithm 

that can estimate effectively the parameters (direction and 
speed) of the evolving front of a hazardous diffusing 
phenomenon. We characterize the spatiotemporal evolution of 
a front’s line segment by a modified 2D Gaussian function 
which serves as an adaptive local predictive model. The 

proposed WSN collaborative algorithm estimates the time 
varying direction and speed of the phenomenon by 
dynamically forming small-size clusters of sensor nodes 
(triplets). Furthermore it updates the local model parameters 
and propagates them in the direction of the front’s movement 
in a fully decentralized manner. The experimental results show 
that the estimation accuracy of the proposed algorithm is 
insensitive to changes in sensor density and sensor failure 
probability, making it a very realistic approach for real-world 
scenarios. Moreover, the results indicate that the proposed 
scheme estimates equally well and with reasonable accuracy 
the parameters of fronts which evolve with constant or time-
varying speed. 

We are currently designing a new version of the algorithm 
in which the speed parameter is updated using a soft decision 
scheme. We believe that with this modification we will be able 
to reduce the speed estimation error without increasing the 
computational load. Furthermore, we are porting the algorithm 
to a real sensor network platform for in-field testing and 
validation. Finally, we are working on an algorithm for 
combining the derived local estimates to reconstruct an overall 
(global) front line estimate of the hazard (e.g. front line of an 
extended wildfire). The capability to update dynamically the 
parameters of local front models in conjunction with this new 
global front reconstruction algorithm will allow us to make 
predictions for the overall front line’s movement which of 
course will become more accurate dynamically in areas where 
more sensors are available. 
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